

Toward Precision Cancer Care: Informed by Biobehavioral Contributions to the Exposome

Closing Discussion APS Special Conference October 26th, 2012

Suzanne D. Conzen, MD Department of Medicine-Medical Oncology Ben May Department of Cancer Biology The Institute of Mind and Biology The University of Chicago

Question: By what biological mechanisms do environmental exposures alter downstream tumor biology?

Understanding molecular mechanisms of tumor biology are crucial for effectively designing and evaluating interventions.

The environment interacts with itself and the individual

Precision Care of the Cancer Patient

Spatial components of the cancer patientenvironment, individual context, and subtype of tumor biology

Temporal components-

Lifespan of the individual and timing of the exposure
 Tumor progression/response (tumor evolution)

Environmental stressors and physiological responses to stressors

Adapted from Antoni *et al. Nature Reviews Cancer* 6, 240–248 (March 2006)

Mediators of the stress response

- B-adrenergic system/SNS
- -mediates gene expression changes immune cells, hypertension and vascular disease
- Glucocorticoid signaling
- -mediates responses through cognate receptors
- -associated with weight gain and metabolic disturbances like insulin resistance

Biobehavioral response mechanisms

Direct endocrine mechanisms:

--SNS/adrenergic signals can affect lymphocyte function, macrophage differentiation and tumor cell growth.

--Glucocorticoids can affect lymphocytes, epithelial cell survival and the microenvironment.

Indirect mech. due to the stress response:

Altered eating, sleeping, inanition and other behaviors affecting energy balance.

Chicago Center for Interdisciplinary Health Disparities model for studying social environment and stress response in breast cancer

Background: Epidemiology of social stress and breast cancer biology

Elevated Biomarkers of Inflammation Are Associated With Reduced Survival Among Breast Cancer Patients

Brandon L. Pierce, Rachel Ballard-Barbash, Leslie Bernstein, Richard N. Baumgartner, Marian L. Neuhouser, Mark H. Wener, Kathy B. Baumgartner, Frank D. Gilliland, Bess E. Sorensen, Anne McTiernan, and Cornelia M. Ulrich

Biomarkers sensitive to social stress were predictive of breast cancer recurrence in a large, multiethnic cohort

Report

Racial and ethnic disparities in breast cancer rates by age: NAACCR Breast Cancer Project

Sue A. Joslyn¹, Mary L. Foote², Kiumarss Nasseri³, Steven S. Coughlin⁴, and Holly L. Howe⁵ ¹University of Northern Iowa, Cedar Falls, IA; ²Wisconsin Department of Health and Family Services, Madison, WI; ³Public Health Institute, Tri-Counties Regional Cancer Registry, Santa Barbara, CA; ⁴Centers for Disease Control and Prevention, Atlanta, GA; ⁵North American Association of Central Cancer Registries, Springfield, IL, USA

African-American women report more stressful life events, higher perceived stress, and lower social support than Caucasian women

Racial Discrimination and Breast Cancer Incidence in US Black Women

The Black Women's Health Study

Teletia R. Taylor^{1,2}, Carla D. Williams¹, Kepher H. Makambi¹, Charles Mouton³, Jules P. Harrell², Yvette Cozier⁴, Julie R. Palmer⁴, Lynn Rosenberg⁴, and Lucile L. Adams-Campbell¹

A retrospective analysis of the Women's Health Study documented a positive correlation between the experience of racial bias and risk for breast cancer in this population

Model for Health Disparities in Breast Cancer

Multi-level sources of psychosocial, hormonal and built environment data from newly diagnosed women

Home: (interview in home) psychosocial functioning, social network, health behaviors, perceived discrimination, life events, daily (4x) salivary cortisol.

Neighborhood: (four block radius around home; Built Environment Team) opportunities for social interaction (vacant lots, traffic in neighborhood, vacant buildings).

Community: (geocoded data) violent crime, collective efficacy, dilapidation of housing, SES, trust, health indicators.

Olopade collects and analyzes breast tumors from same women

In home interviews: demographics, histories and validated scales

DAY ONE

Demographics Typical Day Record Social Relationships and Health - Health Behavior Questionnaire Pittsburgh Sleep Quality Index (PSQI) Social Relationships and Health - Exercise Short Form for Health (SF-12v2) Collective Efficacy Scale (Sampson) Religion and Spirituality Scale Coping Style (COPE Y3 – 8-item version) Perceived Stress Scale (PSS) CARDIA IV Perceived Discrimination Scale UCLA Loneliness Scale Center for Epidemiologic Studies-Depression Scale (CES-D) Social Relationships and Health (LEQ2) The Health and Retirement Study (HRS) Module 6: Loneliness, Stress, and Social Support/Social Burden (LSSSB) Events in Puberty Questionnaire Medical History – Past 5 years Income/Financial/Insured Status Information

DAY TWO

The Women's Quality of Life Scale Social Network Scale (Youm) Home Safety Questionnaire Neighbors Survey Safety of Neighborhood Questionnaire Need to Belong Scale

Gehlert 2009

Conclusion: Mismatch of support needed & support received

Gehlert 2009

African American women with newly diagnosed breast cancer report antecedent loneliness

*p=0.001

The molecular basis of breast cancer progression

Moran et al, Cancer Res 64, 2000

Glucocorticoids (GCs) provide a potent anti-apoptotic signal to MCF 10A-Myc cells

Moran et al, <u>Cancer Res</u> 64, 2000

Modeling chronic stressor exposure in rodent models

McClintock Lab

(Hermes et al, PNAS, 2009)

Background: Social isolation as a chronic stressor in transgenic mice

Behavior: "Vigilance" in a potentially threatening environment can be measured

Chronic isolation is associated with increased tumor growth in the SV40 model

Background: Mammary tumorigenesis- the microenvironment

Differentially expressed genes reveal lipid metabolism-related pathway is seen at 15 weeks

In isolated MGs at 15w, there is a relative upregulation of genes encoding KEY enzymes in glucose uptake and lipogenesis

Increased MG gene expression of key metabolic genes

Mince mammary gland, collagenase digest, centrifuge

Isolate adipocyte RNA

Isolate epithelial, stromal cell RNA

Gene Expression

Metabolic gene expression in mammary adipocytes

Increased A) glucose consumption and B) lipogenesis in adipocytes from isolated mice mammary glands

Evaluation of adipokines secreted from isolated vs. group-housed mouse mammary fat

Mammary gland epithelial cell line proliferation is increased with conditioned media from social isolates

Leptin expression and secretion is increased in mammary fat from isolated mice

Serum "biomarkers" do not necessarily reflect the mammary gland gland changes

	Grouped	Isolated	p-value	
Blood Glucose (mg/dL)	113.4 ± 27.9	113.1 ± 11.6	0.98	
Serum Insulin (pg/mL)	361.5 ± 222.8	385.5 ± 215.6	0.84	
NEFA (mEq/L)	0.93 ± 0.20	0.79 ± 0.18	0.24	
Serum Leptin (ng/mL)	2.03 ± 1.20	2.74 <u>+</u> 0.91	0.18	>
Weight gain: 8-10wks (g/wk)	0.60 <u>+</u> 0.18	0.27 <u>+</u> 0.13	0.16	
Food consumption: 8-10wks (kcal/wk)	65.3 <u>+</u> 3.7	74.2 <u>+</u> 1.8	<0.05	
Weight gain: 11-17wks (g/wk)	0.27 ± 0.15	0.42 <u>+</u> 0.10	0.34	
Food consumption: 11-17wks (kcal/wk)	73.3 <u>+</u> 2.2	88.0 <u>+</u> 1.4	<0.01	>

Energy consumption is increased

Adipose tissue secretes **Many** substances

(pre-adipocytes, macrophages, lymphocytes, blood vessels)

Altered cancer biology: 1)initiation vs. 2) progression

Timing of exposure & dvptal changes (e.g. early puberty)
Systemic endocrine/catecholamine disruption

(e.g. high insulin levels, increased estrogens, cortisol)

Local effects on tumorigenesis via microenvironment

Systemic and local effects on immunity and inflammation

<u>Shared mechanisms of energy balance</u> disruption cancer risk/recurrence

Systemic: Insulin resistance, increased circulating insulin, increased PI3K activation in epithelial tumors

Local: increased adipose tissue and increased adipose tissue activity, altered secretion of local growth factors, such as leptin.

Back to the precision cancer care

Do these local and systemic physiological changes alter:

- 1) Tumor initiation (initial risk/premalignant)
- 2) Tumor recurrence (early stage cancers)
- 3) Tumor progression of metastatic cancer

By the same mechanisms in different stages?

Different stages of tumorigenesis require different analyses

Tumor initiation

- Normalcancer
 mechanism
- Individual genetics important
- Prevention of primary is goal

- tumor type is known
- Interventions are likely tumor subtype dependent
- Reduce the risk of recurrence

- Tumor cells are dispersed
- Treatment is ongoing
- QOL versus lifespan

How do we provide *precision* cancer care?

1. <u>? Focus on cancer survivors:</u> Survivors of early-stage cancer appear to be perhaps the "best" group of patients to target strategies to reduce risk of measurable *recurrence*. (Would require cooperative groups to achieve adequate numbers)

 <u>Consider the tumor subtype</u>: For example with breast cancer, the risks in ER+ and ER- breast cancer are not be the same.

Toward Precision Cancer Care

 Understand the mechanisms downstream of the stress response, and elements that modify the stress response

» Diet

» Exercise

- Understand/Identify these molecular mechanisms in the context of tumor growth.
- *Identify* individuals/tumors at highest risk.
- Design interventions that target the (behavioral) mechanisms upstream of modulating tumor growth.

Matthew Brady,

Martha McClintock, PhD

NCI, AVON, Komen and the DOD

