Physical Activity Influences on Cancer Risk and Survival

Christine Friedenreich, PhD Senior Research Scientist, Population Health Research, Alberta Health Services-Cancer Care

Adjunct Professor and ACF Weekend to End Women's Cancers Breast Cancer Chair, University of Calgary

Physical activity across the cancer continuum:

- Prevention
- Treatment
- Rehabilitation
- Survival
- Review of evidence from:
 - Observational studies
 - Randomized controlled exercise intervention trials

Biologic mechanisms in physical activity and cancer control:

- RCT evidence for cancer prevention, rehabilitation and survival
- Future research directions

Physical Activity in Cancer Control Framework

Courneya & Friedenreich (2001, 2007)

Physical Activity and Cancer Courneya and Friedenreich, editors

Recent Results in Cancer Research P.M. Schlag · H.-J. Senn Series Editors

Kerry S. Courneya Christine M. Friedenreich Editors

Physical Activity and Cancer

Indexed in PubMed/Medline

Topics:

 Physical Activity and Cancer Prevention

 Physical Activity and Cancer Survivorship

 Physical Activity and Cancer Special Topics

Recent Results in Cancer Research, Springer-Verlag, 2011

Level of Evidence on Physical Activity and Cancer Risk Reduction

Convincing or Probable	Insufficient or Null			
	Rectal *			
Colon	Pancreatic			
Breast	Gastric			
Endometrial	Bladder			
	Testicular			
Weaker evidence	Kidney			
Lung	Hematologic cancers (non-Hodgkin			
Prostate	lymphoma, Hodgkin lymphoma, leukemia, multiple myeloma)			
Ovarian	* No association			

Friedenreich et al. *EJC*, 2010; 46:2593-2604

Physical Activity and Cancer Research: State of the Science

Adapted from Owen N et al. Amer J Prev Med 2011, 41, 189-196.

Physical Activity and Breast Cancer Risk

Lynch BM, Neilson HK, Friedenreich CM. Physical activity and breast cancer prevention.

In Courneya KS and Friedenreich CM (eds). <u>Physical Activity and</u> <u>Cancer</u>. Recent Results in Cancer Research. Heidelberg:Springer-Verlag, 2011.

Summary of Evidence on Physical Activity and Breast Cancer Risk

- Consistent evidence (66 out of 88 observed decreased risk):
 - 19 studies show no effect
 - 66 studies show decreased risk
 - 3 studies find increased risks
- Fairly strong risk reductions (25% decrease for highest vs. lowest activity levels, on average)
 - 31% average risk reduction in case-control studies
 - 19% average risk reduction in cohort studies
- Clear <u>dose-response</u> with increasing activity and decreasing risk (40 of 50 studies)
- Biologic plausibility exists (several possible mechanisms) Lynch et al. in Courneya and Friedenreich, Physical
- Temporality exists

Lynch et al. in Courneya and Friedenreich, <u>Physical</u> <u>Activity and Cancer</u>. Heidelberg: Springer-Verlag, 2011

Physical Activity and Breast Cancer Risk: Cohort Studies

Physical Activity and Breast Cancer Risk: Case-control Studies

Breast Cancer Risk Reduction by Type, Dose and Timing of Activity

18 17 16 15 14 13 Moderate Vigorous

Hours/week

Population Subgroup Effects for Physical Activity and Breast Cancer

Physical Activity and Risk of Colon Cancer

Summary of Evidence on Physical Activity and Colon Cancer Risk

- Consistent evidence (72 of 86 studies)
 - 15 show no effect and no studies find increased risk
- Fairly strong risk reductions (~30% decreases for highest vs. lowest activity levels)

 - 20% average risk reduction in cohort studies
- Clear dose-response (41 of 47 studies)
- Biologic plausibility exists
- Temporality exists

Physical Activity and Colon Cancer Risk: Cohort Studies

Physical Activity and Colon Cancer Risk: Case-control Studies

0.001

0.125

0.5

1

2

4

10

0.01

Type, Dose and Timing of Activity: Colon Cancer

Type of Activity

- All types may be effective for lowering risk
 - e.g., occupational activity (22% decrease in risk), recreational (23%)
- Sedentary behaviour may increase risk

Intensity

Vigorous or moderate activity decrease risk

Timing of activity

Inconsistent findings

Population Sub-groups

- Relatively constant effects across BMI categories
- Association may vary by tumour sub-site
 - ☞ i.e., proximal or distal
- Benefit for men and women
- Unclear effects of race/ethnicity, dietary intake, HRT use

Physical Activity and Risk of Gynecologic Cancer

Summary of Evidence on Physical Activity and Endometrial Cancer Risk

- <u>Consistent</u> evidence (23 of 28 studies)
 Nearly all of studies show risk reductions
- Fairly strong risk reductions (30-35% decreases for highest vs. lowest activity levels)
 25% average risk reduction in cohort studies
 - 20% average risk reduction in cose-control studies
 - → 37% average risk reduction in case-control studies
- Evidence of <u>dose-response</u> (12 of 19 studies)
- Biologic plausibility exists
- Sedentary behaviour emerging as possibly important

Physical Activity and Endometrial Cancer Risk

Cohort Studies {	Prospective cohort Terry et al, 1999 Furberg & Thune, 2003 Gierach et al, 2009 Friberg et al, 2006 Patel et al, 2008 Colbert et al, 2003 Friedenreich et al, 2007		•		-	
	Retrospective cohort Zheng et al, 1993 Moradi et al, 1998			.		
	Case-cohort study Schouten et al, 2004		-	- •		
Case- control Studies	Population-based case-control Sturgeon et al, 1993 Salazar-Martinez et al, 2000 Shu et al, 1993 Matthews et al, 2005 John et al, 2010 Arem et al, 2011 Olson et al, 1997 Goodman et al, 1997 Littman et al, 2001 Moradi et al, 2000 Friedenreich et al, 2010					
	Hospital-based case-control Kalandidi et al, 1996 Dosemeci et al, 1993 Levi et al, 1993 Hirose et al, 1996 Tavani et al, 2009				_	
	Statistically signif	icant risk reduc	tion in 14 of	28 stuc	lies (50)%)
	0.001	0.01	0.125	0.5 1	2 4	10

Summary of Evidence on Physical Activity and Ovarian Cancer Risk

- Moderately consistent evidence (12 of 24 studies)
 - 12 studies show risk reductions
 - 3 studies show increased risk (1 is statistically significant)
- <u>Weak risk</u> reductions (<10% average decreases for highest vs. lowest activity levels)
 Average 10% increased risk in cohort studies
 Average 25% decreased risk from case-control studies
- Some evidence of <u>dose-response</u> (9 of 11 studies)

Physical Activity and Ovarian Cancer Studies

Physical Activity and Risk of Prostate Cancer

Summary of Evidence on Physical Activity and Prostate Cancer Risk

- Less consistent evidence (26 of 56 studies)
 25 studies find no effect
 26 studies find decreased risk
 5 studies find increased risk
- Weak risk reductions (10% decreases for highest vs. lowest activity levels)
- Evidence of <u>dose-response</u> (12 of 18 studies)
 about half of the studies that examined these trends
- Some <u>biologic</u> plausibility exists

Physical Activity and Prostate Cancer: Cohort Studies

Physical Activity and Prostate Cancer: Case-control Studies

0.01

0.001

0.125

05 1 2 4 10

Physical Activity and Risk of Lung Cancer

Summary of Evidence on Physical Activity and Lung Cancer Risk

<u>Consistent</u> evidence (20 of 28 studies)
 7 show no effect
 20 show decreased risks

Fairly strong risk reductions (25% decreases for highest vs. lowest activity levels)

Evidence of <u>dose-response</u> (9 of 11 studies)
 about half of the studies that examined these trends

Weaker evidence for <u>biologic</u> plausibility exists

Effect of smoking needs to be considered

Physical Activity and Lung Cancer: Cohort Studies

Physical Activity and Lung Cancer: Case-Control Studies

Summary of Evidence on Physical Activity and Cancer Risk by Site

Cancer Site	Number	Studies	Consistency	Magnitude of	Dose-		
	of	found	of evidence	risk reduction	response		
	Studies	reduced			effect		
		risk					
Colon	86	72	Yes	30%	Yes		
Breast	88	66	Yes	25%	Yes		
Endometrial	28	23	Yes	30-35%	Yes		
Lung	28	20	Some	25%	Some		
Prostate	56	26	No	10%	Limited		
Ovarian	24	12	No	<10%	Limited		
	la sufficient en Niull						

All Others

Insufficient or Null

Physical Activity During Cancer Treatment

<u>Supervised Trial of Aerobic vs</u> <u>Resistance Training (START Trial)</u>

Courneya KS et al. J Clin Oncol 2007;25:4396-4404

Aerobic capacity

Fatigue

QOL

Self-esteem

Courneya et al. J Clin Oncol, 2007

Adapted from Jones, AICR, 2011

Main Results from START Trial

- <u>Aerobic exercise (AET)</u> was better than usual care (UC) for:
 - Self-esteem
 - Aerobic fitness
 - Percent body fat
 - Fat mass

Resistance exercise (RET) was better than usual care for:

- Self-esteem
- Lower body strength
- Upper body strength
- Lean body mass
- Chemotherapy completion rate

 Improved quality of life, fatigue, depression and anxiety in exercise groups as compared to usual care (nonstatistically significant improvements)

Courneya et al. JCO, 2007; 25:4396-4404

<u>Combined Aerobic and Resistance</u> <u>Exercise Trial (CARE Trial)</u>

Randomized Controlled Trials of Physical Activity in Cancer Survivors

Summary of Effects of Exercise on Physical Characteristics By Cancer Phase

Characteristic	Treatment		Survivorship		
	Effect	<i>P</i> -value	Effect	<i>P</i> -value	
PA level	1	0.70	$\uparrow\uparrow$	0.0001	
Aerobic fitness	1	0.03	1	0.03	
Upper body strength	$\uparrow\uparrow$	0.006	$\uparrow\uparrow$	0.0001	
Lower body strength	$\uparrow\uparrow$	0.006	1	0.02	
Body weight	\downarrow	0.05	$\downarrow\downarrow$	0.004	
% body fat	\downarrow	0.04	$\downarrow\downarrow$	0.006	

Speck et al., J Cancer Survivorship 2010;4:87-100

Summary of Effects of Exercise on Patient Reported Outcomes By Cancer Phase

Characteristic	Treatment		Survivorship		
	Effect	<i>P</i> -value	Effect	<i>P</i> -value	
Fatigue	\downarrow	0.75	$\downarrow\downarrow$	0.003	
Quality of life	1	0.11	1	0.03	
Physical function	$\uparrow\uparrow$	0.04	1	0.25	
Depression	Null	0.70	\downarrow	0.10	
Anxiety	\downarrow	0.02	$\downarrow\downarrow$	0.07	

Speck et al., J Cancer Survivorship 2010;4:87-100

Observational Studies on Physical Activity and Breast Cancer Survival

Ballard-Barbash et al. JNCI 2012; 104: 815-840

Physical Activity and Breast Cancer Mortality: Observational Studies

Randomized Controlled Trial Follow-	чр		<u>.</u>				
Bertram, 2011			-+				
Prospective Cohort							
Hellmann, 2010			-+				
Borugian, 2004			+				
Emaus, 2010			-++				
Holmes, 2005							
Irwin, 2011							
Chen, 2011			_ +				
West-Wright, 2009							
Cancer Survivorship Cohort							
Stemfeld, 2009							
Irwin, 2008			•				
- Multi-centered Case-control Study F	ollow-up						
Dal Maso, 2008			-++				
Population-Based Case-control Stud	y Follow-up						
Rohan, 1995							
Friedenreich, 2009			•				
Enger, 2004			+-	_			
Holick, 2008			- •				
Average rick redu	otion in 250/ re	proving from 0	500/ for	octiv		looot c	
Average risk reduc		anging norn 0-	50% 101	activ	e vs	least a	
τ	I	1 1	<u> </u>		1	<u> </u>	
0.001	0.01	0.125	0.5 1	2	4	10	

Physical Activity and Breast Cancer Observational Studies: All Cause Mortality

Randomized Controlled Trial Follow-up	- I
Bertram, 2011	-
Prospective Cohort	
Hellmann, 2010	+
Keegan, 2010	
Abrahamson, 2006	
Emaus, 2010 West-Wright, 2009	
Holmes, 2005	
Chen, 2011	_ + _
Irwin, 2011	+ _
Cancer Survivorship Cohort	
Stemfeld, 2009	+ _
Irwin, 2008	+
Multi-centered Case-control Study Follow-up	
Dal Maso, 2008	-+-
Population-Based Case-control Study Follow-up	
Friedenreich, 2009	
Holick, 2008	+

Average risk reduction is 29% ranging from 0-67% for active vs least active

0.01

0.125 0.5 1

2

4

 1Ω

0.001

Risk of Breast Cancer Recurrence and Mortality by Physical Activity Level

Holmes et al. JAMA 2005; 293:2479-86

Alberta Cohort Study of Lifetime PA and Breast Cancer Survival

Friedenreich et al., Int J Ca 2009; 124:1954-62

Alberta Cohort Study of Lifetime PA and Breast Cancer Survival

Friedenreich et al., *Int J Ca* 2009; 124:1954-62

Alberta Cohort Study of Lifetime PA and Breast Cancer Survival

Friedenreich et al., *Int J Ca* 2009; 124:1954-62

Observational Studies on Physical Activity and Colon Cancer Cancer Survival

Physical Activity and Colon Cancer Mortality and All Cause Mortality: Observational Studies

Colon	Colon Cancer Cause Mortality: Rando Meyerhardt 2006b	omized controlled Trial Fo	ollow-up	-•			
Cancer Mortality	Colon Cancer Cause Mortality: Prosp Haydon 2006 Meyerhardt 2009b Meyerhardt 2009a Meyerhardt 2006a Morikawa 2011	ective cohort			-		
	All Cause Mortality: Randomized com Meyerhardt 2006b	trolled Trial Follow-up		•			
All Cause Mortality	Al Cause Mortality: Prospective coho Haydon 2006 Morikawa 2011 Meyerhardt 2009b Meyerhardt 2009a Meyerhardt 2006a	ort					
Averag	e risk reduction is 48% 63%) for all caus					44%	(23-
	0 001	0.01	0 125	051	2	4	10

Nurses Health Study: Survival After Colorectal Cancer by Level of Postdiagnosis Physical Activity

Fig 1. Cumulative incidence curve of colorectal cancer-specific deaths by level of postdiagnosis physical activity. MET, metabolic equivalent task.

Fig 2. Kaplan and Meier curve of overall survival by level of postdiagnosis physical activity. MET, metabolic equivalent task.

Cumulative incidence and Kaplan-Meier survival curves

Meyerhardt et al. JCO 2006; 24:3527-34

Multivariate-Adjusted Hazard Ratios of CRC Specific and Overall Mortality (n=554)

<u>Colon Health and Life-Long Exercise</u> Change (CHALLENGE) Trial

Primary: disease-free survival Secondary: PROs, functional capacity, etc.

Courneya et al. Curr Oncol, 2008;15:262-70

Physical Activity and Prostate Cancer Survival

Risk of Prostate Cancer Mortality by Postdiagnosis PA

Physical Activity Level (MET-Hours/Week)

Kenfield et al. JCO 2011;29:726-32

Risk of Prostate Cancer and All Cause Mortality by Vigorous Post-diagnosis Physical Activity

Kenfield et al. JCO 2011; 29:726-32.

Summary of Evidence on Physical Activity and Cancer Mortality by Site

Cancer	Number	Magnitude of	Magnitude	Dose-
Site	of	reduction in	of reduction	response
	studies	cancer	in all cause	effect
		specific	mortality	
		mortality		
Breast	17	25%	30%	Some
Colon	6	45-50%	40-45%	Some
Prostate	1	60%	45%	NA
Ovarian	2	10%*	10%	NA
Glioma	1	NR	55%	NA

^{*} Increased risk

Physical Activity and Cancer Risk: Biologic Mechanisms

How physical activity could interact with carcinogenesis

Adapted from Rundle A. <u>CEBP</u> 2005;14:227-36

Hypothesized Biologic Mechanisms Between Physical Inactivity, Sedentary Behaviour and Cancer Risk

Friedenreich CM, Lynch BM, Langley A. in press

Biologic Mechanisms: Emerging Evidence of Effect of PA

Mechanism	Possible effect of Physical Activity	Cancer Sites
Vitamin D	 Associated with higher 25-hydroxyvitamin D blood levels 	Colon, Breast
Insulin-like growth factors	 Might ↓ IGF-1 and ↑ IGFBP-3 	Colon, Premenopausal breast, Endometrium, Ovaries, Prostate, Lung
Immune function	 May improve innate and acquired immune responses to recognize and eliminate cancer cells Effects of long-term, moderate intensity PA on humans at risk not well understood 	Most cancers
Oxidative stress, anti-oxidant defense and DNA repair	 May reduce oxidative stress, increase anti- oxidant enzymes (e.g. superoxide dismutase), and/or enhance DNA repair 	Most cancers
Prostaglandins	 May inhibit synthesis of prostaglandins 	Colon
Gastrointestinal transit time	 ↑ Gut motility and may ↓ transit time → less interaction between mucosa and carcinogens but changes may not be large enough to alter risk 	Colon
Pulmonary function	 ↓ Concentration of carcinogens in lung and ↓ exposure time of carcinogens to lung tissue 	Lung

Randomized Controlled Exercise Intervention Trials for Breast Cancer Prevention

Three year-long RCTs conducted to date on aerobic exercise and breast cancer biomarkers among postmenopausal, inactive, 50-75 yr old healthy women:

- McTiernan et al. (<u>Physical Activity for Total</u> <u>Health Trial</u>) (N=173)
- Monninkhof et al. (<u>Sex Hormones and Physical</u> <u>Exercise Trial</u>) (N=189)
- Friedenreich et al. (<u>Alberta Physical Activity</u> and Breast Cancer Prevention Trial) (N=320)

ALPHA Trial: Design

- Study design: Two-armed, two-centered RCT
- Intervention: Year-long, 5 days/week, 45 mins/session (3 supervised, 2 unsupervised), aerobic exercise only, no change in diet
- Eligibility criteria: Postmenopausal, 50-74 yrs, no previous cancer, healthy, BMI=22-40, no HRT use, non-smoker, non-excessive alcohol, inactive
- Control: No change in exercise or diet
- Sample size: 320
- Outcomes: Sex hormones, adiposity, insulin resistance, inflammation, mammographic density

Hypothesized Biologic Mechanisms Between Physical Activity and Breast Cancer

Friedenreich CM, Neilson HK, Lynch BM. Eur J Cancer. 2010; 46:2593-2604

Impact of Exercise Intervention on Endogenous Estrogens: Estradiol

Friedenreich et al., *JCO*, 2010; 28:1458-66

Impact of Exercise Intervention on Sex Hormone Binding Globulin

Friedenreich et al., *JCO*, 2010; 28:1458-66

Impact of Exercise Intervention on Adiposity Outcomes

Change from Baseline	Exercisers	Controls	Difference	<i>p</i> -value
Weight (kg)	-2.3	-0.5	-1.8	<.001
Body mass index (kg/m ²)	-0.9	-0.2	-0.7	<.001
Waist circumference (cm)	-2.2	0.1	-2.3	<.001
Abdominal fat area (cm ²)	-48.5	-9.6	-38.9	<.001
Intra-abdominal fat area (cm ²)	-16.5	-1.6	-14.9	<.001

Friedenreich et al., Int J Obes 2010; 35:427-35

Impact of Exercise Intervention on Adiposity Outcomes

Change from Baseline	Exercisers	Controls	Difference	<i>p</i> -value
Subcutaneous fat area (cm ²)	-32.0	-7.9	-24.1	<.001
Percent body fat	-2.0	-0.2	-1.8	<.001
Fat mass (kg)	-2.4	-0.4	-2.0	<.001
Lean muscle mass (kg)	-0.0	-0.1	0.1	0.564

Friedenreich et al., Int J Obes 2010; 35:427-35

Percent Change of Total Body Fat and Intra-abdominal Fat Change by Average Weekly Duration of Exercise

* Significant difference compared with control group (*P*<0.05). Friedenreich et al., *Int J Obes* 2010; † Significant difference compared with low-active group (*P*<0.05). 35:427-35

Insulin Resistance Outcomes

Friedenreich et al., Endocrine-Related Cancer, 2011;18:357-69

Impact of Exercise Intervention on Insulin

Friedenreich et al., Endocrine Related Cancer 2011;18:357-69

Impact of Exercise Intervention on Leptin

Friedenreich et al., Endocrine Related Cancer 2011;18:357-69
Impact of Exercise Intervention on Insulin Resistance (HOMA)

Percent Change in Insulin Biomarkers by Adherence Levels

Friedenreich et al., Endocrine Related Cancer 2011;18:357-69

Inflammatory Marker Outcomes

Friedenreich et al., Cancer Prev Research 2011;4 (epub)

Impact of Exercise Intervention on C-reactive Protein

Friedenreich CM et al. Cancer Prev Research 2011

Percent Change of C-reactive Protein by Average Weekly Duration of Exercise

Friedenreich CM et al. Cancer Prev Research 2011;4

Main Findings on Exercise and Breast Cancer Biomarkers

Endpoint	PATH Trial	SHAPE Trial	ALPHA Trial
Sex hormones	↓estrone and estradiol restricted to women who lost >2% body fat	No effect on estrogens or androgens	↓estradiol and ↑SHBG
Obesity	↓ all adiposity measures	↓ body fat but no effect on weight, BMI or hip circumference	↓all adiposity measures
Insulin resistance	↓insulin, leptin, HOMA score	Not reported	↓ insulin, HOMA-IR, leptin, adiponectin/leptin ratio
Inflammation	↓C-reactive protein	Not reported	↓ C-reactive protein
Publications	Irwin 2003; McTiernan 2004; Frank 2005; Campbell 2009	Monninkhof 2009; Velthuis, 2009	Friedenreich 2010a; Friedenreich 2010b, Friedenreich 2011

Study Participants and Staff

beta tria

RECORS

Previn

S T U D Y

Alberta Moving Beyond Breast Cancer (AMBER) Cohort Study

<u>Alberta</u> <u>Moving</u> <u>Beyond</u> Breast Cancer Cohort (AMBER) Study

Study Time Line and Design

Courneya KS, Friedenreich CM (co-PIs), CIHR 2011-16

2017-2022

2012-2017

Enroll 1500 incident Stage I-IIIb breast cancer cases

Measure physical activity, healthrelated fitness, determinants of PA, patient-related outcomes, biomarkers, lymphedema How can physical activity and health related fitness be used to inform clinical recommendations for improving patient-related outcomes and survival in breast cancer survivors?

Repeat baseline measurements at 1, 3 and 5 years post-diagnosis

Follow-up for mortality outcomes (disease-specific and all cause)

Figure 6. Hypothesized biologic model relating proposed biomarkers to long-term physical activity, health-related fitness, breast cancer therapies and breast cancer mortality and recurrence

CT- chemotherapy; HRF- health-related fitness; HT- hormone therapy; PA - physical activity

Lifestyle and Breast Cancer Risk: Current State of the Scientific Inquiry

 NCI Workshop on Feasibility of Physical Activity and Weight Control Trial to Prevent Breast Cancer, March, 2006

Background:

- Diabetes Prevention Program (DPP)
- Dietary Approaches to Prevent Hypertension (DASH)
- Look Action for Health in Diabetes (Look AHEAD)

Recommended study design:

- Primary endpoint: breast cancer
- Inclusion criteria: age 45-75, postmenopausal, Gail score>1.7
- Exclusion criteria: invasive breast cancer, DCIS, use of SERMs
- Intervention: calorie-controlled diet and 150-225 mins/wk of moderate intensity activity, 5 days or more per week
- ◆ Trial goal: 10% weight loss if BMI >25 kg/m², overall 5-7% avg wt loss
- Sample size: Estimated breast cancer risk reduction with increased physical activity would be 18% and for weight control 12% with an additive effect with the two components for a 30% reduction in risk

Sample Size for RCT of PA and Weight Control for Primary Prevention of Breast Cancer

Table 4. Sample size estimations for a primary prevention trial of invasive and noninvasive breast cancer to evaluate physical activity and weight control

Hazard ratio (control vs treatment		Minimum follow-up of 5 years		Minimum follow-up of 3 years	
5-year disease-free interval rate)	Power, %	Length of accrual, y	No. of patients	Length of accrual, y	No. of patients
0.75 (97.8 vs 98.4)	90	5.1	20 638	6.2	25 052
	85	4.5	18 262	5.6	22 468
	80	4.1	16 350	5.1	20 442
0.80 (97.8 vs 98.3)	90	7.3	29 190	8.5	34 174
	85	6.5	25 974	7.6	30 774
	80	5.8	23 472	7.0	28 108
0.85 (97.8 vs 98.1)	90	11.3	45 246	12.7	50 874
	85	10.1	40 502	11.4	45 976
	80	9.2	36 807	10.5	42 146
		Dalla	rd Darbaab		

Ballard-Barbash et al. JNCI 2009;

For a 20% risk reduction, power of 85-90% and 5 year follow-up would need 26,000-30,000 women
No trial currently planned

Future Research Directions

- Investigate sedentary behaviour and light intensity activity as risk factors for cancers
- Improve PA measurements including objective assessments
- More precision on type, dose, timing of activity in relation to risk and survival
- Examine effect modification by other factors
- Conduct prospective observational studies of new biomarkers
- Need more mechanistic RCTs that evaluate different doses and types of PA
- Need more research on PA and survival at other cancer sites
- Ultimate objective: provide more quantitative data to enhance public health recommendations regarding PA type, dose, timing for cancer risk reduction and improved survival

Conclusion

Strong, consistent evidence worldwide that PA reduces colon, breast, endometrial cancer risks and possibly also prostate, lung and ovarian cancers by 10-30% with a dose-response effect and some sub-group effects

Several plausible biologic mechanisms exist
RCTs are finding support for these mechanisms

PA also improves survival after breast, colon and prostate cancers by 30% or more

Acknowledgements

Career Awards:

- CIHR
- ♦ AI-HS
- <u>Research Funding:</u>
 - Canadian Cancer Society
 - Alberta Cancer Foundation
 - CIHR
 - Canadian Breast Cancer Research Alliance
- Research Collaboration:
 - Dr Kerry Courneya, U of Alberta
 - Others: Drs. Rollin Brant, Yutaka Yasui, Anne McTiernan, Rachel Ballard-Barbash, Tim Terry, Charlotte Jones, Melinda Irwin, Martin Yaffe, Norman Boyd, Frank Stanczyk, Robert Millikan, David Lau, John Mackey, Jeff Vallance, Nicole Culos-Reed, Margaret McNeely, Kristin Campbell, Kristina Karvinen
- Trainees: Dr. Christy Woolcott, Ame-Lia Tamburrini, Rita Biel, Dr. Brigid Lynch, Dr. Fabiola Aparicio-Ting, Dr. Shannon Conroy
- <u>Staff:</u> Department of Population Health Research, Alberta Health Services-Cancer Care

